8 research outputs found

    Internet of Things: Surveys for Measuring Human Activities from Everywhere

    Get PDF
    The internet of things (IoT), also called internet of all, is a new paradigm that combines several technologies such as computers, the internet, sensors network, radio frequency identification (RFID), communication technology and embedded systems to form a system that links the real worlds with digital worlds. With an increase in the deployment of smart objects, the internet of things should have a significant impact on human life in the near future. To understand the development of the IoT, this paper reviews the current research of the IoT, key technologies, the main applications of the IoT in various fields, and identifies research challenges. A main contribution of this review article is that it summarizes the current state of the IoT technology in several areas, and also the applications of IoT that cause side effects on our environment for monitoring and evaluation of the impact of human activity on the environment around us, and also provided an overview of some of the main challenges and application of IoT. This article presents not only the problems and challenges of IoT, but also solutions that help overcome some of the problems and challenges

    Challenges and Opportunities of Internet of Things in Healthcare

    Get PDF
    The Internet of  Things (IoT) relies on physical objects interconnected between each other’s, creating a mesh of devices producing information and services. In this context, sensors and actuators are being continuously embedded in everyday objects (e.g., cars, home appliances, and smartphones) thus pervading our living environment. Among the plethora of application contexts, smart Healthcare is gaining momentum. Indeed IoT can revolutionize the healthcare industry by improving operational efficiency and clinical trials’ quality of monitoring, and by optimizing healthcare costs. This paper provides an overview of IoT, its applicability in healthcare, some insights about current trends and an outlook on future developments of healthcare systems.

    Big Data Classification and Internet of Things in Healthcare

    Full text link
    [EN] Every single day, a massive amount of data is generated by different medical data sources. Processing this wealth of data is indeed a daunting task, and it forces us to adopt smart and scalable computational strategies, including machine intelligence, big data analytics, and data classification. The authors can use the Big Data analysis for effective decision making in healthcare domain using the existing machine learning algorithms with some modification to it. The fundamental purpose of this article is to summarize the role of Big Data analysis in healthcare, and to provide a comprehensive analysis of the various techniques involved in mining big data. This article provides an overview of Big Data, applicability of it in healthcare, some of the work in progress and a future works. Therefore, in this article, the use of machine learning techniques is proposed for real-time diabetic patient data analysis from IoT devices and gatewaysRghioui, A.; Lloret, J.; Oumnad, A. (2020). Big Data Classification and Internet of Things in Healthcare. International Journal of E-Health and Medical Communications. 11(2):20-37. https://doi.org/10.4018/IJEHMC.2020040102203711

    A Smart Glucose Monitoring System for Diabetic Patient

    Full text link
    [EN] Diabetic patients need ongoing surveillance, but this involves high costs for the government and family. The combined use of information and communication technologies (ICTs), artificial intelligence and smart devices can reduce these costs, helping the diabetic patient. This paper presents an intelligent architecture for the surveillance of diabetic disease that will allow physicians to remotely monitor the health of their patients through sensors integrated into smartphones and smart portable devices. The proposed architecture includes an intelligent algorithm developed to intelligently detect whether a parameter has exceeded a threshold, which may or may not involve urgency. To verify the proper functioning of this system, we developed a small portable device capable of measuring the level of glucose in the blood for diabetics and body temperature. We designed a secure mechanism to establish a wireless connection with the smartphone.Rghioui, A.; Lloret, J.; Harane, M.; Oumnad, A. (2020). A Smart Glucose Monitoring System for Diabetic Patient. Electronics. 9(4):1-18. https://doi.org/10.3390/electronics9040678S1189

    A Smart Architecture for Diabetic Patient Monitoring Using Machine Learning Algorithms

    Full text link
    [EN] Continuous monitoring of diabetic patients improves their quality of life. The use of multiple technologies such as the Internet of Things (IoT), embedded systems, communication technologies, artificial intelligence, and smart devices can reduce the economic costs of the healthcare system. Different communication technologies have made it possible to provide personalized and remote health services. In order to respond to the needs of future intelligent e-health applications, we are called to develop intelligent healthcare systems and expand the number of applications connected to the network. Therefore, the 5G network should support intelligent healthcare applications, to meet some important requirements such as high bandwidth and high energy efficiency. This article presents an intelligent architecture for monitoring diabetic patients by using machine learning algorithms. The architecture elements included smart devices, sensors, and smartphones to collect measurements from the body. The intelligent system collected the data received from the patient, and performed data classification using machine learning in order to make a diagnosis. The proposed prediction system was evaluated by several machine learning algorithms, and the simulation results demonstrated that the sequential minimal optimization (SMO) algorithm gives superior classification accuracy, sensitivity, and precision compared to other algorithms.Rghioui, A.; Lloret, J.; Sendra, S.; Oumnad, A. (2020). A Smart Architecture for Diabetic Patient Monitoring Using Machine Learning Algorithms. Healthcare. 8(3):1-16. https://doi.org/10.3390/healthcare80303481168

    Glucose Data Classification for Diabetic Patient Monitoring

    Get PDF
    [EN] Living longer and healthier is the wish of all patients. Therefore, to design effective solutions for this objective, the concept of Big Data in the health field can be integrated. Our work proposes a patient monitoring system based on Internet of Things (IoT) and a diagnostic prediction tool for diabetic patients. This system provides real-time blood glucose readings and information on blood glucose levels. It monitors blood glucose levels at regular intervals. The proposed system aims to prevent high blood sugar and significant glucose fluctuations. The system provides a precise result. The collected and stored data will be classified by using several classification algorithms to predict glucose levels in diabetic patients. The main advantage of this system is that the blood glucose level is reported instantly; it can be lowered or increased.This work has been partially supported by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" within the project under Grant TIN2017-84802-C2-1-P.Rghioui, A.; Lloret, J.; Parra-Boronat, L.; Sendra, S.; Oumnad, A. (2019). Glucose Data Classification for Diabetic Patient Monitoring. Applied Sciences. 9(20):1-15. https://doi.org/10.3390/app9204459S115920Rghioui, A., Sendra, S., Lloret, J., & Oumnad, A. (2016). Internet of Things for Measuring Human Activities in Ambient Assisted Living and e-Health. Network Protocols and Algorithms, 8(3), 15. doi:10.5296/npa.v8i3.10146Zhang, Y., Gravina, R., Lu, H., Villari, M., & Fortino, G. (2018). PEA: Parallel electrocardiogram-based authentication for smart healthcare systems. Journal of Network and Computer Applications, 117, 10-16. doi:10.1016/j.jnca.2018.05.007Ismail, W. N., Hassan, M. M., Alsalamah, H. A., & Fortino, G. (2018). Mining productive-periodic frequent patterns in tele-health systems. Journal of Network and Computer Applications, 115, 33-47. doi:10.1016/j.jnca.2018.04.014Aboufadel, E., Castellano, R., & Olson, D. (2011). Quantification of the Variability of Continuous Glucose Monitoring Data. Algorithms, 4(1), 16-27. doi:10.3390/a4010016Katon, W. J., Rutter, C., Simon, G., Lin, E. H. B., Ludman, E., Ciechanowski, P., … Von Korff, M. (2005). The Association of Comorbid Depression With Mortality in Patients With Type 2 Diabetes. Diabetes Care, 28(11), 2668-2672. doi:10.2337/diacare.28.11.2668Riazul Islam, S. M., Daehan Kwak, Humaun Kabir, M., Hossain, M., & Kyung-Sup Kwak. (2015). The Internet of Things for Health Care: A Comprehensive Survey. IEEE Access, 3, 678-708. doi:10.1109/access.2015.2437951Lloret, J., Canovas, A., Sendra, S., & Parra, L. (2015). A smart communication architecture for ambient assisted living. IEEE Communications Magazine, 53(1), 26-33. doi:10.1109/mcom.2015.7010512Xiao, Z., Tan, X., Chen, X., Chen, S., Zhang, Z., Zhang, H., … Min, H. (2015). An Implantable RFID Sensor Tag toward Continuous Glucose Monitoring. IEEE Journal of Biomedical and Health Informatics, 1-1. doi:10.1109/jbhi.2015.2415836Wang, H.-C., & Lee, A.-R. (2015). Recent developments in blood glucose sensors. Journal of Food and Drug Analysis, 23(2), 191-200. doi:10.1016/j.jfda.2014.12.001Ahmed, H. B., & Serener, A. (2016). Effects of External Factors in CGM Sensor Glucose Concentration Prediction. Procedia Computer Science, 102, 623-629. doi:10.1016/j.procs.2016.09.452Siddiqui, S. A., Zhang, Y., Lloret, J., Song, H., & Obradovic, Z. (2018). Pain-Free Blood Glucose Monitoring Using Wearable Sensors: Recent Advancements and Future Prospects. IEEE Reviews in Biomedical Engineering, 11, 21-35. doi:10.1109/rbme.2018.2822301Fortino, G., Parisi, D., Pirrone, V., & Di Fatta, G. (2014). BodyCloud: A SaaS approach for community Body Sensor Networks. Future Generation Computer Systems, 35, 62-79. doi:10.1016/j.future.2013.12.015Kanchan, B. D., & Kishor, M. M. (2016). Study of machine learning algorithms for special disease prediction using principal of component analysis. 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC). doi:10.1109/icgtspicc.2016.7955260Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software. ACM SIGKDD Explorations Newsletter, 11(1), 10-18. doi:10.1145/1656274.1656278Huda, S., Yearwood, J., Jelinek, H. F., Hassan, M. M., Fortino, G., & Buckland, M. (2016). A Hybrid Feature Selection With Ensemble Classification for Imbalanced Healthcare Data: A Case Study for Brain Tumor Diagnosis. IEEE Access, 4, 9145-9154. doi:10.1109/access.2016.264723

    Internet of things for measuring human activities in ambient assisted living and e-health

    Full text link
    Internet of things (IoT) is a new paradigm that combines several technologies such as computers, Internet, sensor networks, radio frequency identification (RFID), communication technology and embedded systems to form a system that links the real world with digital world. Currently, a large number of smart objects and different type of devices are interconnected and more and more they are being used in Ambient Assisted Living (AAL) scenarios for improving the daily tasks of elderly and disabled people. This paper presents an IoT architecture and protocol for Ambient Assisted Living and e-health. It is designed for heterogeneous AAL and e-health scenarios where an IoT network is the most suitable option to interconnect all elements. Finally, we simulate a medium-size network with four protocols especially designed for networks with important energy constraints in order to show their performance.Rghioui, A.; Sendra, S.; Lloret, J.; Oumnad, A. (2016). Internet of things for measuring human activities in ambient assisted living and e-health. Network Protocols and Algorithms. 8(3):15-28. doi:10.5296/npa.v8i3.10146S15288

    A Smart Glucose Monitoring System for Diabetic Patient

    No full text
    Diabetic patients need ongoing surveillance, but this involves high costs for the government and family. The combined use of information and communication technologies (ICTs), artificial intelligence and smart devices can reduce these costs, helping the diabetic patient. This paper presents an intelligent architecture for the surveillance of diabetic disease that will allow physicians to remotely monitor the health of their patients through sensors integrated into smartphones and smart portable devices. The proposed architecture includes an intelligent algorithm developed to intelligently detect whether a parameter has exceeded a threshold, which may or may not involve urgency. To verify the proper functioning of this system, we developed a small portable device capable of measuring the level of glucose in the blood for diabetics and body temperature. We designed a secure mechanism to establish a wireless connection with the smartphone
    corecore